What does a future dominated by AI imply?

Among altruists working to reduce risks of bad outcomes due to AI, I sometimes get the impression that there is a rather quick step from the premise “the future will be dominated by AI” to a practical position that roughly holds that “technical AI safety research aimed at reducing risks associated with fast takeoff scenarios is the best way to prevent bad AI outcomes”.

I am not saying that this is the most common view among those who work to prevent bad outcomes due to AI. Nor am I saying that the practical position outlined above is necessarily an unreasonable one. But I think I have seen (something like) this sentiment assumed often enough for it to be worthy of a critique. My aim in this post is to argue that there are many other practical positions that one could reasonably adopt based on that same starting premise.


Contents

  1. “A future dominated by AI” can mean many things
    1. “AI” can mean many things
    2. “Dominated by” can mean many things
    3. Combinations of many things
  2. Future AI dominance does not imply fast AI development
  3. Fast AI development does not imply concentrated AI development
  4. “A future dominated by AI” does not mean that either “technical AI safety” or “AI governance” is most promising
  5. Concluding clarification

“A future dominated by AI” can mean many things

“AI” can mean many things

It is worth noting that the premise that “the future will be dominated by AI” covers a wide range of scenarios. After all, it covers scenarios in which advanced machine learning software is in power; scenarios in which brain emulations are in power; as well as scenarios in which humans stay in power while gradually updating their brains with gene technologies, brain implants, nanobots, etc., such that their intelligence would eventually be considered (mostly) artificial intelligence by our standards. And there are surely more categories of AI than just the three broad ones outlined above.

“Dominated by” can mean many things

The words “in power” and “dominated by” can likewise mean many different things. For example, they could mean anything from “mostly in power” and “mostly dominated by” to “absolutely in power” and “absolutely dominated by”. And these respective terms cover a surprisingly wide spectrum.

After all, a government in a democratic society could reasonably be claimed to be “mostly in power” in that society, and a future AI system that is given similar levels of power could likewise be said to be “mostly in power” in the society it governs. By contrast, even the government of North Korea falls considerably short of being “absolutely in power” on a strong definition of that term, which hints at the wide spectrum of meanings covered by the general term “in power”.

Note that the contrast above actually hints at two distinct (though related) dimensions on which different meanings of “in power” can vary. One has to do with the level of power — i.e. whether one has more or less of it — while the other has to do with how the power is exercised, e.g. whether it is democratic or totalitarian in nature.

Thus, “a future society with AI in power” could mean a future in which AI possesses most of the power in a democratically elected government, or it could mean a future in which AI possesses total power with no bounds except the limits of physics.

Combinations of many things

Lastly, we can make a combinatorial extension of the points made above. That is, we should be aware that “a future dominated by AI” could — and is perhaps likely to — combine different kinds of AI. For instance, one could imagine futures that contain significant numbers of AIs from each of the three broad categories of AI mentioned above.

Additionally, these AIs could exercise power in distinct ways and in varying degrees across different parts of the world. For example, some parts of the world might make decisions in ways that resemble modern democratic processes, with power distributed among many actors, while other parts of the world might make decisions in ways that resemble autocratic decision procedures.

Such a diversity of power structures and decision procedures may be especially likely in scenarios that involve large-scale space expansion, since different parts of the world would then eventually be causally disconnected, and since a larger volume of AI systems presumably renders greater variation more likely in general.

These points hint at the truly vast space of possible futures covered by a term such as “a future dominated by AI”.

Future AI dominance does not imply fast AI development

Another conceptual point is that “a future dominated by AI” does not imply that technological or social progress toward such a future will happen soon or that it will occur suddenly. Furthermore, I think one could reasonably argue that such an imminent or sudden change is quite unlikely (though it obviously becomes more likely the broader our conception of “a future dominated by AI” is).

An elaborate justification for my low credence in such sudden change is beyond the scope of this post, though I can at least note that part of the reason for my skepticism is that I think trends and projections in both computer hardware and economic growth speak against such rapid future change. (For more reasons to be skeptical, see Reflections on Intelligence and “A Contra AI FOOM Reading List”.)

A future dominated by AI could emerge through a very gradual process that occurs over many decades or even hundreds of years (conditional on it ever happening). And AI scenarios involving such gradual development could well be both highly likely and highly consequential.

An objection against focusing on such slow-growth scenarios might be that scenarios involving rapid change have higher stakes, and hence they are more worth prioritizing. But it is not clear to me why this should be the case. As I have noted elsewhere, a so-called value lock-in could also happen in a slow-growth scenario, and the probability of success — and of avoiding accidental harm — may well be higher in slow-growth scenarios (cf. “Which World Gets Saved”).

The upshot could thus be the very opposite, namely that it is ultimately more promising to focus on scenarios with relatively steady growth in AI capabilities and power. (I am not claiming that this focus is in fact more promising; my point is simply that it is not obvious and that there are good reasons to question a strong focus on fast-growth scenarios.)

Fast AI development does not imply concentrated AI development

Likewise, even if we grant that the pace of AI development will increase rapidly, it does not follow that this growth will be concentrated in a single (or a few) AI system(s), as opposed to being widely distributed, akin to an entire economy of machines that grow fast together. This issue of centralized versus distributed growth was in fact the main point of contention in the Hanson-Yudkowsky FOOM debate; and I agree with Hanson that distributed growth is considerably more likely.

Similar to the argument outlined in the previous section, one could argue that there is a wager to focus on scenarios that entail highly concentrated growth over those that involve highly distributed growth, even if the latter may be more likely. Perhaps the main argument in favor of this view is that it seems that our impact can be much greater if we manage to influence a single system that will eventually gain power compared to if our influence is dispersed across countless systems.

Yet I think there are good reasons to doubt that argument. One reason is that the strategy of influencing such a single AI system may require us to identify that system in advance, which might be a difficult bet that we could easily get wrong. In other words, our expected influence may be greatly reduced by the risk that we are wrong about which systems are most likely to gain power. Moreover, there might be similar and ultimately more promising levers for “concentrated influence” in scenarios that involve more distributed growth and power. Such levers may include formal institutions and societal values, both of which could exert a significant influence on the decisions of a large number of agents simultaneously — by affecting the norms, laws, and social equilibria under which they interact.

“A future dominated by AI” does not mean that either “technical AI safety” or “AI governance” is most promising

Another impression I have is that we sometimes tacitly assume that work on “avoiding bad AI outcomes” will fall either in the categories of “technical AI safety” or “AI governance”, or at least that it will mostly fall within these categories. But I do not think that this is the case, partly for the reasons alluded to above.

In particular, it seems to me that we sometimes assume that the aim of influencing “AI outcomes” is necessarily best pursued in ways that pertain quite directly to AI today. Yet why should we assume this to be the case? After all, it seems that there are many plausible alternatives.

For example, one could think that it is generally better to pursue broad investments so as to build flexible resources that make us better able to tackle these problems down the line — e.g. investments toward general movement building and toward increasing the amount of money that we will be able to spend later, when we might be better informed and have better opportunities to pursue direct work.

A complementary option is to focus on the broader contextual factors hinted at in the previous section. That is, rather than focusing primarily on the design of the AI systems themselves, or on the laws that directly govern their development, one may focus on influencing the wider context in which they will be developed and deployed — e.g. general values, institutions, diplomatic relations, collective knowledge and wisdom, etc. After all, the broader context in which AI systems will be developed and put into action could well prove critical to the outcomes that future AI systems will eventually create.

Note that I am by no means saying that work on technical AI safety or AI governance is not worth pursuing. My point is merely that these other strategies focused on building flexible resources and influencing broader contextual factors should not be overlooked as ways to influence “a future dominated by AI”. Indeed, I believe that these strategies are among the most promising ways in which we can have a beneficial such influence at this point.

Concluding clarification

On a final note, I should clarify that the main conceptual points I have been trying to make in this post likely do not contradict the explicitly endorsed views of anyone who works to reduce risks from AI. The objects of my concern are more (what I perceive to be) certain implicit models and commonly employed terminologies that I worry may distort how we think and talk about these issues.

Specifically, it seems to me that there might be a sort of collective availability heuristic at work, through which we continually boost the salience of a particular AI narrative — or a certain class of AI scenarios — along with a certain terminology that has come to be associated with that narrative (e.g. ‘AI takeoff’, ‘transformative AI’, etc). Yet if we change our assumptions a bit, or replace the most salient narrative with another plausible one, we might find that this terminology does not necessarily make a lot of sense anymore. We might find that our typical ways of thinking about AI outcomes may be resting on a lot of implicit assumptions that are more questionable and more narrow than we tend to realize.

Comments are closed.

Blog at WordPress.com.

Up ↑

%d bloggers like this: